Most important
Рождественские лекции 2017 с 27 ноября, библиотека НИТУ МИСиС

 
20.09.2015 Лаборатория «Физические методы акустооптическая и лазерная аппаратура для задач диагностики и терапии онкологических заболеваний»

На базе новой лаборатории НИТУ «МИСиС» под руководством доктора физико-математических наук, член-корреспондента РАН Ефима Хазанова, Институт прикладной физики РАН, разрабатываются способы диагностики и терапии онкологических заболеваний с помощью лазерных технологий и создается компонентная база для лазерно-плазменного ускорителя протонов, одним из приложений которого является терапия рака.

Научный коллектив лаборатории объединил усилия ведущих специалистов в области акустооптики и систем обработки изображений (НИТУ «МИСиС»), лазерной физики (ИПФ РАН, г. Нижний Новгород), онкологии (ЭНЦ РАМН, Биологический факультет МГУ им. М.В. Ломоносова), кристаллофизики (ТвГУ, г. Тверь). В рамках реализации проекта был создан уникальный комплекс научно-исследовательской аппаратуры, позволяющий проводить исследования в области биомедицинской оптики.

Своей основной целью лаборатория ставит создание новых акустооптических систем гиперспектральной лазерной флуоресцентной диагностики онкологических заболеваний и акустооптических приборов для фемтосекундных лазерных комплексов адронной терапии онкологических заболеваний. Данный проект представляет уникальное сочетание современных разработок в области оптики и лазерной физики с применениями в биомедицинской области (онкологии). Актуальность поставленных задач обусловлена направленностью на создание ключевых компонентов нового поколения установок адронной терапии онкологических заболеваний, основанных на компактных лазерных источниках и ускорителях заряженных частиц высоких энергий. Также в проекте решается задача формулирования новых диагностических критериев при дифференциальной диагностике и определении злокачественности опухолей человека.

Результаты, которые были достигнуты коллективом лаборатории:
1. Создан экспериментальный прототип акустооптической гиперспектральной системы с возможностью пространственной фильтрации и оконтуривания изображений.
2. Создан лазерный драйвер фотокатодов для инжекции электронов с акустооптической системой управления ультракороткими лазерными импульсами.
3. Исследования в области акустики и оптики анизотропных сред позволили определить оптимальные конфигурации широкоапертурных и квазиколлинеарных акустооптических фильтров на основе монокристаллов парателлурита.
4. Проведены гиперспектральные исследования флуоресцентного излучения опухолевых тканей щитовидной железы человека.
5. Разработаны методы формирования произвольных спектральных функций пропускания акустооптических фильтров.

Система гиперспектрального анализа и лазерного исследования микроскопических препаратов 

Юшков К.png Константин Юшков, Ведущий научный сотрудник
Гиперспектральный анализ заключается в получении и массива изображений исследуемого объекта на различных длинах волн и последующем изучении спектральных особенностей различных фрагментов изображения. Основы технологии гиперспектрального анализа, называемые также спектрозональной съемкой, были разработаны для решения задач астрофизики, космических исследований и дистанционного зондирования Земли. В последние годы эти методы стали внедряться и в биомедицинских исследованиях, в частности в диагностика рака. Получаемый при гиперспектральном анализе объем информации об объекте существенно превосходит цветные изображения: спектральное разрешение современных гиперспектральных систем составляет несколько сот линий в видимом диапазоне спектра, в то время как цветная (RGB) камера выделяет только три широких спектральных диапазона (красный, зеленый и синий). Одним из физических приборов, позволяющих реализовать спектрометр изображений, являются перестраиваемые акустооптические фильтры. 

Мы подготовили фоторепортаж, который описывает систему гиперспектрального анализа и лазерного исследования микроскопических препаратов и раскрывает её значение. Читать далее 

Возврат к списку

Our projects
Last comments



Яндекс.Метрика